Local subdivision of Powell-Sabin splines

نویسندگان

  • Hendrik Speleers
  • Paul Dierckx
  • Stefan Vandewalle
چکیده

We present an algorithm for local subdivision of Powell-Sabin spline surfaces. The construction of such a spline is based on a particular PS-refinement of a given triangulation. We build the new triangulation on top of this PS-refinement by applying a √ 3-subdivision scheme on a local part of the domain. To avoid degeneration we introduce a simple heuristic for refinement propagation, driven by a parameter. This parameter manages the trade-off between the mesh quality and the refinement localization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computer aided geometric design with Powell-Sabin splines

Powell-Sabin splines are C-continuous quadratic splines defined on an arbitrary triangulation. Their construction is based on a particular split of each triangle in the triangulation into six smaller triangles. In this article we give an overview of the properties of Powell-Sabin splines in the context of computer aided geometric design. These splines can be represented in a compact normalized ...

متن کامل

Dyadic and \sqrt 3 - subdivision for Uniform Powell-Sabin Splines

We give two different possibilities for subdivision of Powell–Sabin spline surfaces on uniform triangulations. In the first case, dyadic subdivision, a new vertex is introduced on each edge between two old vertices. In the second case, p 3–subdivision, a new vertex is introduced in the center of each triangle of the triangulation. We give subdivision rules to find the new control points of the ...

متن کامل

Quasi-hierarchical Powell-Sabin B-splines

Hierarchical Powell-Sabin splines are C-continuous piecewise quadratic polynomials defined on a hierarchical triangulation. The mesh is obtained by partitioning an initial conforming triangulation locally with a triadic split, so that it is no longer conforming. We propose a normalized quasi-hierarchical basis for this spline space. The B-spline basis functions have a local support, they form a...

متن کامل

Isogeometric analysis with Powell-Sabin splines

This paper presents the use of Powell-Sabin splines in the context of isogeometric analysis for the numerical solution of advectiondiffusion-reaction equations. Powell-Sabin splines are piecewise quadratic C functions defined on a given triangulation with a particular macro-structure. We discuss the Galerkin discretization based on a normalized Powell-Sabin B-spline basis. We focus on the accur...

متن کامل

A Hermite interpolatory subdivision scheme for C2-quintics on the Powell-Sabin 12-split

In order to construct a C1-quadratic spline over an arbitrary triangulation, one can split each triangle into 12 subtriangles, resulting in a finer triangulation known as the Powell-Sabin 12-split. It has been shown previously that the corresponding spline surface can be plotted quickly by means of a Hermite subdivision scheme [5]. In this paper we introduce a nodal macroelement on the 12-split...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Aided Geometric Design

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2006